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Abstract The influence of gravity on the Marangoni flow instability in half zone liquid bridges in
the case of liquid metals is investigated by direct 3D and time-dependent simulation of the problem.
The computations are carried out for different heating conditions and environments (zero g
conditions and on ground liquid zone heated from above or from below). The case of cylindrical
shape (simplified model) and of melt/air interface deformed by the effect of gravity (real conditions)
are considered. The comparison among these situations gives insight into the separate (gravity)
effects of buoyancy forces and of the free surface deviation with respect to straight configuration.
Body-fitted curvilinear co-ordinates are adopted to handle the non-cylindrical problem. The liquid
bridge exhibits different behaviours according to the allowed bridge shape. If the shape is forced to
be cylindrical, the flow field is stabilized in the case of heating from above and destabilized if gravity
is reversed. If the deformation is taken into account, gravity always stabilizes the Marangoni flow
regardless of its direction (parallel or antiparallel to the axis) and the 3D flow structure is different
according to the heating condition (from above or from below). In the latter case, the critical
Marangoni number is larger and the critical wave number is smaller, compared with the opposite
condition. In addition, for Pr ¼ 0.02 (Gallium), a surprising heretofore unseen behaviour arises.
No steady bifurcation occurs and the flow becomes unstable directly to oscillatory disturbances.
This phenomenon has never been reported before in the case of low Prandtl number liquids.

Introduction
Marangoni convection in a half-zone liquid bridge of length L and radius R
confined between two differentially heated isothermal solid disks has become
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over the years, a typical model for the study of Marangoni flows, their stability,
and their bifurcations. The stability of free convection in non-isothermal liquid
bridges with quasi-cylindrical free surfaces has been in fact the subject of
intense research. These studies are motivated by the fact that flow instabilities
in such configurations may be responsible for the appearance of undesirable
striations in crystals grown by floating zone technique.

It is well known that the flow exhibits axi-symmetric and steady toroidal roll
cell structure if the temperature difference between the two disks is small and
that it becomes unstable and a 3D Marangoni flow arises when the applied
temperature gradient exceeds a certain threshold value. On this subject, there
have been many experimental works, theoretical studies by means of the linear
stability analyses and non-linear numerical simulations.

Experiments (Frank and Schwabe, 1998; Preisser et al., 1983; Velten et al.,
1991) performed with half zone liquid bridges of transparent liquids (with
Prandtl numbers higher than those typical of liquid metals) have shown that
3D Marangoni flow always starts with oscillatory behaviour (Hopf bifurcation).
The development of supercomputers and efficient numerical methods led the
investigators to study the problem through direct numerical solution of the
non-linear and time-dependent Navier Stokes equations. Levenstam and
Amberg (1995), Leypoldt et al. (2000) and Rupp et al. (1989) found that for liquid
metals, the first bifurcation is stationary (i.e. the supercritical 3D state is
steady) and that the regime becomes oscillatory only if the Marangoni number
is further increased (second oscillatory bifurcation). Lappa and Savino (1999)
used parallel supercalculus to study the 3D structure (characterized by the
appropriate value of the azimuthal wave number of the instability) of the flow
pattern that is established after the steady bifurcation for Pr ¼ 0:04: Imaishi
et al. (1999, 2000) and Yasushiro et al. (2000) depicted in detail the complex
spatio-temporal behaviour of the flow field that occurs after the second
(oscillatory) bifurcation of the Marangoni flow for different values of the aspect
ratio (defined as ratio of the length and of the radius of the liquid bridge, i.e.
A ¼ L=R) and of the Prandtl number ð0 # Pr # 0:02Þ; elucidating different
oscillatory behaviours.

Lappa et al. (2001a) pointed out that for non-cylindrical (convex or concave)
liquid bridges of liquid metal ðPr ¼ 0:01Þ; the flow field and the critical wave
number depend on the geometrical aspect ratio and also on the shape factor
S ¼ V=V 0 of the liquid bridge (V: volume of the liquid, V0: volume of the
cylinder having radius R and length L; liquid surface is convex for S . 1,
concave for S , 1).

Since it is very difficult to conduct a well controlled experiment with liquid
metals of small Prandtl numbers (due to opacity, reactivity and high
temperatures of the melts), there are only few experiments on the flow
instability in half zone liquid bridges of semiconductor materials. During on
ground experimentation, sounding rocket missions and other parabolic flights,
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using a X-ray radiography technique with zirconium-core tracers, Nakamura
et al. (1998) investigated the supercritical Marangoni flow in a molten column of
silicon.

To date, several numerical investigations in the case of high Prandtl number
liquids have become available. Lappa et al. (2001b), Yasushiro et al. (1997, 1999)
and Zeng et al. (1999) analysed the influence of the aspect ratio on the
time-dependent 3D structure of Marangoni flow for Pr ¼ 1; 16 and 30,
respectively, elucidating many features of the supercritical flow (e.g. the
oscillation type, standing wave or travelling wave). Shevtsova and Melnikov
(2000) extended these studies taking into account the influence of the
temperature-dependent viscosity on the supercritical flow field for 1 , Pr , 4:

Linear stability analyses (Chen and Hu, 1998; Chen et al., 1997, 1999;
Kuhlmann and Rath, 1993; Neitzel et al., 1992; Wanschura et al., 1995) have
confirmed that for high Prandtl number fluids, the instability is oscillatory
(Hopf bifurcation) whereas for low Prandtl number fluids, the instability breaks
the spatial axisymmetry (but the flow regime is still steady) prior to the onset of
time dependent flow field (in this case, the instability is hydrodynamic in
nature i.e. its mechanism does not involve a coupling between the temperature
and the velocity disturbances). These analyses extended the investigated range
of aspect ratios and values of the Prandtl number and elucidated that the 3D
Marangoni flows are initiated through different mechanisms, i.e. inertia
instability of the axial shear layer below the free surface for small Pr fluids and
hydrothermal wave for large Pr fluid case.

Many studies also have appeared where the stability of the combined
Marangoni buoyant convection was investigated. Excellent experiments have
been given by Velten et al. (1991). They studied the influence of gravity
(heating from above and heating from below) on the transition point, frequency
and spatial structure of the flow field in the case Pr ¼ 1; 7 and 49. Using linear
stability technique, Wanschura et al. (1997) considered the stability limit of
combined buoyant-thermocapillary flow in half-zone liquid bridge for a fixed
aspect ratio ðA ¼ 1:0Þ and Pr ¼ 4: A systematic and parametric analysis of the
features of the mixed buoyancy-Marangoni instability for a high Prandtl liquid
ðPr ¼ 30Þ over a large range of aspect ratios ð0:4 # A # 1:0Þ was carried out
through full 3D solution of the time-dependent, non-linear and complete Navier
Stokes equations by Lappa et al. (2000).

Surface deformation due to the gravity field was neglected in the
above theoretical and numerical studies, since only low values of the aspect
ratio were investigated ðA # 1:0Þ: The experimental results (Velten et al.,
1991), the theoretical studies by means of the linear stability analyses
(Wanschura et al., 1997) and non-linear numerical simulations (Lappa et al.,
2000) have shown, in the case of high Prandtl number liquids, that the critical
wave number in azimuthal direction at the onset of instability completely
changes according to whether the bridge is heated from above or from below
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and that the Marangoni flow is strongly stabilized under the heating-from-
below condition.

In spite of the large theoretical and numerical efforts done to study the
gravity effect on the features of the Marangoni flow instability, in the case
of high Prandtl liquids, no work has appeared in literature investigating
this problem for liquid metals. Aim of the present paper is to extend the
analysis to low Prandtl number cases and to larger aspect ratio where the
deformation of the free surface due to gravity cannot be neglected. These
amphoral shape provide more accurate simulations of the on-ground
floating zone experiments.

Physical and mathematical model
Basic assumptions
The geometry of the problem is shown in Figure 1. An axi-symmetric liquid
bridge of length L and diameter D is held between two coaxial disks at different
temperatures. The upper disk in Figure 1 is kept at the temperature T̄H higher
than the temperature T̄C of the lower cold disk. The imposed temperature
difference is denoted by DT ( �TH ¼ �TC þ DTÞ: The overbar denotes
dimensional quantities. The liquid is assumed to be homogeneous and
Newtonian, with constant density and constant coefficients; viscous dissipation
is negligible. The liquid filling the bridge is bounded by an axi-symmetric
liquid-gas interface with a surface tension s̄ exhibiting a linear decreasing
dependence on the temperature:

Figure 1.
Sketch of the liquid
bridge
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�s ¼ �so 2 �sTð �T 2 �TCÞ ð1Þ

where s̄o is the surface tension at �T ¼ �TC and �sT ¼ 2d �s=d �T . 0:
Since it is well known that experimental dynamic interface deformations are

negligible (1026 m) compared to the floating zone size (1022 m), it can be
assumed that dynamic deformations do not significantly influence the features
of the Marangoni flow instability investigated for static shapes. For this reason,
the interface is assumed to be non-deformable and axi-symmetric around the
z-axis; its radial co-ordinate is a function of the z̄ variable ð�r ¼ �cð�zÞÞ: The
hydrostatic shape of this surface can be obtained from the Gauss-Laplace
equation, relating the local curvature of the surface to the pressure jump along
the liquid-gas interface:

Dp þ �rg�z ¼ �s
1

R1
þ

1

R2

� �
ð2Þ

where R1 and R2 are the principal radii of curvature at each point of the surface.
Equation (2) may be reformulated in dimensionless form in the cylindrical

co-ordinates by substituting the analytical expression of the principal radii of
curvature in axi-symmetric geometry in terms of the surface equation c(z)
ðc ¼ �c=L; r ¼ �r=L; z ¼ �z=LÞ :

1

cð1 þ c
02Þ1=2

2
c 00

ð1 þ c
02Þ3=2

¼
LDp

�s
þ

rgL2

�s
z ¼ k1 þ k2 z ð3Þ

The parameter k2 ¼ L2rg= �s takes into account the deformation of the shape
under gravity conditions. It depends on the value of the g-level, on the length of
the liquid bridge and on the properties of the liquid under investigation ( r̄ and s̄).
Each value of the parameter k1 ¼ LDp= �s corresponds to a fixed volume of
the liquid bridge. For the present analysis, the value of k1 has been assigned in
equation (3) in order to obtain a volume V equal to V 0 ¼ pR 2L (i.e. V=V 0 ¼ 1)
and the equation has been integrated by a shooting method with the conditions
that the liquid is attached to the solid supports:

cð0Þ ¼ cð1Þ ¼ R=L ð4a; bÞ

Non-dimensional field equations and boundary conditions
The flow is governed by the continuity, Navier-Stokes and energy equations,
that in non-dimensional conservative form (cylindrical co-ordinates) read:

›u

›z
þ

›v

›r
þ

v

r
þ

1

r

›Vf

›f
¼ 0 ð5aÞ
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þ
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where V, p and T are the non-dimensional velocity, pressure and temperature,
Pr is the Prandtl number (defined by Pr ¼ n=a where n is the kinematic
viscosity and a is the thermal diffusivity). The Rayleigh number is defined by
Ra ¼ gbTDTL 3

na
where bT is the thermal expansion coefficient. The non-

dimensional form results from scaling the cylindrical co-ordinates (z̄, r̄) by the
axial distance between the circular disks (L) and the velocity components
(ū, v̄, V̄f) by the energy diffusion velocity Va ¼ a=L; the scales for time and
pressure are, respectively, L2=a and ra2=L2: The non-dimensional
temperature is defined as: T ¼ ð �T 2 �TcÞ=ðDTÞ:

For t . 0; the boundary conditions on the rigid disks are the no-slip
condition and the temperature conditions:

on the cold disk

V ðr;f; tÞ ¼ 0; Tðr;f; tÞ ¼ 0; 0 # r # 1=A; 0 # f # 2p ð6aÞ
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on the hot disk

V ðr;f; tÞ ¼ 0; Tðr;f; tÞ ¼ 1; 0 # r # 1=A; 0 # f # 2p ð6bÞ

The boundary conditions on the free surface ðr ¼ cðzÞÞ are the kinematic
conditions of a stream surface (zero normal velocity), the Marangoni conditions
(shear stress balance) and the adiabatic condition (the reference Marangoni
number Ma is defined as Ma ¼ sTDT L=maÞ :

ð1 2 c
02Þ

›u

›r
þ

›v

›z

� �
þ 2c 0 ›v

›r
2

›u

›z

� �

¼ 2Ma ð1 þ c
02Þ1=2 c 0 ›T

›r
þ

›T

›z

� �
ð7aÞ

›Vf

›r
2

Vf

r
þ

1

r

›v

›f
2 c 0 ›Vf

›z
þ

1

r

›u

›f

� �
¼ 2Ma ð1 þ c

02Þ1=2 ›T

›f
ð7bÞ

›T

›r
2 c 0 ›T

›z
¼ 0 ð7cÞ

The present assumption of adiabatic free interface (equation 7(c)) is strictly
related to the values assumed by the Marangoni number close to the threshold
of the instability. The critical Marangoni number is in fact of the order
O(101-102) and the corresponding temperature difference applied along the
liquid interface (according to the physical properties listed in Table II and in
the case L ¼ 1 cm) is of the order O(1021) [K]. Obviously, T̄c is of the same
order of magnitude of the melting temperature T̄m of the material under
investigation (O(102-103) in the case of metals). For this reason, DT= �Tc ! 1 and
the heat loss towards the ambient (supposed at temperature T̄c) can be
assumed not to alter significantly the temperature field with respect to
adiabatic conditions.

To solve the problem, the body-fitted curvilinear co-ordinates are adopted.
The non-cylindrical original physical domain in the (r, z, f) space is
transformed into a cylindrical computational domain in the (j, h, f) space by

z ¼ j j ¼ z
!

r ¼ h cðjÞ h ¼ r=cðjÞ
ð8Þ

the radial co-ordinate r ranges from h ¼ 0 (at the symmetry axis) up to h ¼ 1
at the free surface; the axial co-ordinate varies from j ¼ 0 at the bottom disk up
to j ¼ 1 at the top disk. The transformed equations and boundary conditions
will be found in the appendix (equations (9) and (10)).
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Numerical solution
Cylindrical shape
In the case of cylindrical surface, equations 5(a)-(e) are discretized by a finite
difference method with a modified central difference treatment for the
convective terms and non-uniform staggered grids. Non-uniform grids are
adopted to increase the resolution. The HSMAC scheme is used to proceed time
evolution of velocity and pressure. For the sake of reducing computation time,
the energy equation is solved by an implicit method. By this modification,
computation speed is increased by a factor ranging between 3 and 10. This
method becomes more effective for smaller Pr cases. Further details on the
numerical method will be found elsewhere (Imaishi et al., 1999, 2000; Yasushiro
et al., 1997, 1999, 2000).

Non-cylindrical shape
In the case of deformed shape, transformed equations are solved numerically in
the (j, h, f) space in primitive variables by a time-explicit finite-difference
method (SMAC method). The transformed domain is discretized with a uniform
cylindrical mesh and the flow field variables defined over a staggered grid.
The axial velocity component is staggered in axial direction with respect to the
point in which temperature and pressure are computed. In a similar way, the
radial and azimuthal velocity components are staggered in radial and
azimuthal directions, respectively.

Forward differences in time and central-differencing schemes in space
(second order accurate) are used to discretize the energy and momentum partial
differential equations. For further details on the numerical method see Lappa
and Savino (1999) and Lappa et al. (2001a).

Validation of the codes
Both codes were carefully validated in previous papers by comparing the first
critical Marangoni number with those of linear stability analyses in the case of
cylindrical shape (Imaishi et al., 1999; Lappa et al., 2001a, b; Yasushiro et al.,
2000). Further, they have been cross-validated for the present analysis through
evaluation of the first critical Marangoni number for a same reference case.
Table I indicates the reliability of the numerical results by using a non-uniform
mesh in radial direction in the case Pr ¼ 0:01; A ¼ 2; L ¼ 1 cm; heating from
above condition, cylindrical shape. The results by the non-uniform mesh agree
within 2.5 per cent to the critical Marangoni number computed by using

Non-uniform mesh Uniform mesh

Mesh NZ¼ 38, Nr¼ 26, Nf¼ 43 NZ¼ 38, Nr¼ 60, Nf¼ 33
Mac1

15.37 15.69

Table I.
Cross-check of the
codes (Pr ¼ 0.01,
cylindrical shape, on
ground heating
from above)
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a uniform mesh whose size corresponds to the minimum radial step used by the
non-uniform mesh.

In order to determine the growth rate constants, the Marangoni number is
changed in a stepwise manner at t ¼ 0: The results give the growth rate
constant as a function of the Marangoni number. According to linear stability
criteria (Chen and Hu, 1998; Chen et al., 1997, 1999; Kuhlmann and Rath, 1993;
Wanschura et al., 1995), the critical Marangoni number is determined as the
Marangoni number at which the growth rate becomes zero.

Results and discussion
Due to the long computational time required for the 3D simulations, the
analysis has been restricted to only one value of the aspect ratio ðA ¼ 2:0;
L ¼ 1 cmÞ and to two different values of the Prandtl number ðPr ¼ 0:01 and
Pr ¼ 0:0207Þ corresponding to silicon and gallium, respectively (the physical
properties of these materials are listed in Table II, respectively). The
simulations are carried out for heating from above, heating from below and
zero g conditions in the case of cylindrical shape and for heating from above
and heating from below in the case of gravity-deformed shape. This artifice
(effect of gravity on the shape of the bridge ignored or “switched on”) is
introduced to discern the separate effects of buoyancy (bulk volume forces) and
of the static deformation of the liquid/air interface (geometrical boundary
condition).

The calculations were run on several Alpha-CPU based workstations and on
an MPU of the Fujitsu VPP700 supercomputer at the Computer Center of
Kyushu University. The grids used for the simulations are shown in Table III.
The computed shape in the case of silicon (Si) and gallium (Ga) are shown in
Figure 2. The corresponding value of the non-dimensional parameter k2 for Si
and Ga is 3.386 and 8.3344, respectively. Figure 2 shows that the shape of the
Ga liquid bridge is more significantly deformed than that of Si because of the
higher density of Ga.

Physical properties
of silicon

Physical properties
of gallium

Density r [g/cm3] 2.53 6.10
Thermal diffusivity a [cm2/s] 2.44£1021 1.66 £ 1021

Kinematic viscosity n [cm2/s] 2.45£1023 3.44 £ 1023

Dynamic viscosity m [g/cm s] 6.2 £ 1023 2.12 £ 1022

Prandtl number 0.01 0.0207
Thermal expansion coefficient b [1/K] 1.4 £ 1024 1.26 £ 1024

Surface tension s [dyne/cm] 7.33 £ 102 7.18£102

sT [dyne/cmK] 1£ 1021 1 £ 1021

Table II.
Physical properties

of silicon and
gallium
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Two-dimensional analysis
Preliminary computations concerning the case of axi-symmetric Marangoni
flow ðMa , Mac1Þ; have been performed in order to study effects associated to
the surface shape prior to the onset of complex 3D flow. As expected, the
influence of the deformation of the interface on the flow field is significant even
if the deviation from the straight condition is small. This behaviour can be
explained according to the fact that, since the same heat flux must pass
through each axial cross-section (adiabatic interface), the axial temperature
gradients are directly related to the size of the cross-sectional area and,
therefore, variations in the cross-sectional area must have a strong effect.

According to Figures 3-7, the surface deformation influences both
temperature and velocity distributions on the free surface and the position of
the vortex core in the bulk of the specimen. Figures 3 and 4 show in particular,
the surface temperature distribution (a) and the surface velocity profile (b) in the
case of silicon and gallium, respectively. Note that in these figures, z ¼ 0

Cylindrical shape non-uniform mesh Gravity deformed shape uniform mesh

Silicon NZ¼ 38, Nr¼ 26, Nf¼ 43 NZ¼ 38, Nr¼ 60, Nf¼ 33
Gallium NZ¼ 38, Nr¼ 26, Nf¼ 43 NZ¼ 38, Nr¼ 60, Nf¼ 49

Table III.
Grids used for the
computations

Figure 2.
Computed free surface
shape
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Figure 3.
Surface temperature
distribution (a) and

surface velocity profile
(b) in the case of silicon

liquid bridge
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Figure 4.
Surface temperature
distribution (a) and
surface velocity profile
(b) in the case of gallium
liquid bridge
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corresponds to the cold disk and z ¼ 1 to the hot disk. The location of the
maximum surface velocity moves towards the hot disk in the case of heating
from above and towards the cold disk in the opposite case. On the contrary,
the vortex core is shifted towards the cold disk in the case of heating from
above and towards the hot disk if the direction of gravity is reversed (see
Table IV, Figures 5-7(a); note that in Figure 7 the direction of the z axis has
been reversed). Moreover, with respect to the results for the cylindrical surface,
the vortex core is shifted outwards (i.e. towards the free surface) regardless of
the direction of gravity (parallel or antiparallel to the axis). This effect increases
the effective diameter (DV) of the convection roll.

The above explanation highlights some interesting aspects related to the
deformation of the surface; however, note that “a priori” predictions about the
instability threshold behaviour are not possible at this stage. The influence of

Figure 5.
Velocity distribution (a)

and axial stress
distribution (b)

(Pr ¼ 0.02, Ma ¼ 40,
bridge heated from

above)

Figure 6.
Velocity distribution (a)

and axial stress
distribution (b)

(Pr ¼ 0.02, Ma ¼ 40,
microgravity conditions)
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the free surface shape on the axial stress ðt ¼ 2mdu=drÞ distribution in the
bulk (responsible of the inertia instability occurring in the case of low Prandtl
number liquid) is extremely complex as shown in Figures 5-7( b).

Three-dimensional simulations
Silicon liquid bridge. The 3D simulations carried out in the case of silicon
show that the disturbances grow exponentially with time, i.e. Vf ¼
Vf0

expðbtÞ sinðmfÞ; and after a long incubation time macroscopic 3D
steady velocity and temperature fields are established (stationary bifurcation).

In order to discern the effect of the buoyancy forces on the stability of the
Marangoni flow, in the first group of calculations, the shape deformation has
been neglected.

Figure 8(a) shows the values of the growth rate constants (b) obtained for
different values of the Marangoni number and for different conditions (i.e. zero
g conditions ðRa ¼ 0Þ; on ground heating from above ðRa , 0Þ and heating

Figure 7.
Velocity distribution (a)
and axial stress
distribution (b)
(Pr ¼ 0.02, Ma ¼ 40,
bridge heated from
below)

Position of the vortex core Maximum surface velocity location

Silicon liquid bridge
Zero g (r ¼ 0.36, z ¼ 0.425) z ¼ 0.36
Heating from above (r ¼ 0.385, z ¼ 0.36) z ¼ 0.48
Heating from below (r ¼ 0.365, z ¼ 0.55) z ¼ 0.30

Gallium liquid bridge
Zero g (r ¼ 0.36, z ¼ 0.41) z ¼ 0.36
Heating from above (r ¼ 0.39, z ¼ 0.43) z ¼ 0.56
Heating from below (r ¼ 0.365, z ¼ 0.66) z ¼ 0.23

Table IV.
Position of the
vortex core and
maximum surface
velocity location in
the case of silicon
liquid bridge and
gallium liquid
bridge
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from below ðRa . 0ÞÞ: The growth rates obtained in the case of normal gravity
conditions and heating from above ðRa , 0Þ lie below the corresponding ones
obtained in the case of microgravity conditions ðRa ¼ 0Þ: Viceversa, the
growth rates obtained in the case heating from below are above those
corresponding to zero g conditions. For the different cases, the wave number is
always equal to one ðm ¼ 1Þ thus showing that in the case of a silicon liquid
bridge having a length of 1 cm and A ¼ 2; the azimuthal wave number is not
affected by the buoyancy forces. According to the behaviour of the evaluated
growth rates, the on ground critical Marangoni numbers in the case of heating
from above ðMac1 ¼ 15:36Þ and heating from below ðMac1 ¼ 14:92Þ are
increased and decreased, respectively, with respect to the case of microgravity
conditions ðMac1 ¼ 15:24Þ (Table V).

As a second step, in order to elucidate the overall effect of the gravity field
(i.e. buoyancy forces + surface deviation from the straight configuration), the

Figure 8.
Growth rates as function

of the Marangoni
number and

determination of the first
critical Marangoni

number. (a) Cylindrical
shape, silicon liquid
bridge; (b) gravity-

deformed shape, silicon
liquid bridge
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deformation of the shape has been taken into account. According to the results
in Figure 8(b), the growth rates obtained in the case of heating from above
and deformed shape lie below the corresponding ones obtained in the case
of cylindrical shape thus giving rise to a stabilization of the flow field
ðMac1 ¼ 16:62Þ: Despite the different value of the critical Marangoni number
ðMac1 ¼ 16:62 instead of Mac1 ¼ 15:36Þ this trend is similar to that already
discussed for the cylindrical case. However, contrary to the case of straight
surface, if the surface deformation is not ignored, the flow exhibits further
stabilization for the heating from below condition. The corresponding values
of the growth rate in fact are below those obtained in the opposite case
ðMac1 ¼ 18:78Þ:

According to these results, if the liquid bridge is allowed to deform, gravity
always acts stabilizing the Marangoni flow regardless of its direction (parallel
or antiparallel to the axis).

The direction, however, is crucial in determining the azimuthal organization.
The structures of the flow and temperature fields in fact are characterized by
m ¼ 1 in the case of heating from below and m ¼ 2 if the direction of gravity is
reversed. The different azimuthal structures of the thermofluid-dynamic field
at the steady state, according to the gravity level and according to the heating
condition (from above and from below) are shown in Figures 9 and 10.

Note that the azimuthal velocity maxima on the free surface always occur
near the cold disk. This behaviour is in agreement with the results of the
linear stability analysis of Wanschura et al. (1997). In their analysis, the
radial flow near the cold disk was supposed to have an important role for
the mechanism of amplification of the disturbances leading to the
instability. Moreover, note that the influence of the buoyancy forces on
the values of the growth rates and, therefore, on the critical Marangoni
number in the case of cylindrical shape can be explained on the basis of
their results. Wanschura et al. (1997) found in fact that the efficiency of the
process of amplification of the azimuthal disturbances responsible of the
inertia instability is proportional to the radial gradient of the base state
axial velocity, i.e. the axial shear. Marangoni forces driving the basic flow
field induce a strong axial shear flow close to the free melt/air interface. The
higher the intensity of the axial share, the lower should be the critical
Marangoni number.

Cylinder 1g
heating from

above
Cylinder
Zero g

Cylinder 1g
heating from

below

1g shape
heating from

above

1g shape
heating from

below

Silicon 15.36 15.24 14.92 16.62 18.78
Gallium 36.19 33.78 31.87 89.51 242.2

Table V.
Critical Marangoni
number
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According to this theory, the stabilization of the flow field in the case of heating
from above follows from the decrease of the surface axial shear intensity that in
this case is reduced since buoyancy and Marangoni forces counteract on the
free interface.

Nevertheless, this theory cannot be used to draw general conclusions about
the stabilization mechanisms. The present simulations in fact highlight that, if
the gravity-deformation of the surface is taken into account, both the heating
conditions (from above and from below) stabilize the flow field. In this case the
stabilization with respect to zero g conditions is not trivial. However, a possible
explanation could be related to the increase of the diameter of the convection
roll (pointed out in the paragraph “two-dimensional analysis”) associated to the
deformation of the shape. In fact, due to the increase of this diameter, the
effective aspect ratio of the toroidal vortex is reduced.

Figure 9.
Structure of 3D

Marangoni flow with
m ¼ 2 in the case of
silicon liquid bridge,

Ma ¼ 40 at the steady
state, 1 , bridge heated

from above. (a) Velocity
field in the meridian

plane f ¼ 3p/4;
(b) azimuthal velocity in
the cross-section z ¼ 0.5;

(c) 3D view of the iso-
surfaces of the

temperature disturbance;
(d) azimuthal velocity on

the free surface
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Gallium liquid bridge
The values of the growth rate constants yielded for different values of the
Marangoni number and for different conditions in the case of cylindrical free
surface are shown in Figure 11. The trend is similar to that discussed in the
case of silicon. The critical Marangoni numbers are Mac1 ¼ 33:78 in the case of
zero g conditions and Mac1 ¼ 36:19 and Mac1 ¼ 31:87 under 1g for heating
from above and below, respectively. For these cases the wave number is always
equal to one ðm ¼ 1Þ:

If the deformation of the shape is not ignored, a very complex scenario
arises. In the case of heating from above the most dangerous azimuthal wave
number is m ¼ 2. The value of the critical Marangoni number (Mac1 ¼ 89:51;
Figure 12(a)) is significantly increased with respect to the cases where the
straight surface is assumed (m ¼ 1 and Mac1 ¼ 36:19Þ:

Figure 10.
Structure of 3D
Marangoni flow with
m ¼ 1 in the case of
silicon liquid bridge,
Ma ¼ 40 at the steady
state, 1g, bridge heated
from below. (a) Velocity
field in the meridian
plane f ¼ 3p/4;
(b) azimuthal velocity in
the cross-section z ¼ 0.5;
(c) 3D view of the iso-
surfaces of the
temperature disturbance;
(d) azimuthal velocity on
the free surface
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It is known that discrete wavenumbers of disturbances are selected out of
the full spectrum of disturbances because the convection roll is closed in a
special zone geometry. If the instability is hydrodynamic in nature, since it does
not depend on the behaviour of the temperature field (for this instability, the
temperature field simply acts as a driving force for the velocity field), the
selection rule is given simply by the constraint that the azimuthal wavelength
must be an aliquot of the toroidal vortex core circumference and by the fact that
the convection roll is limited axially by the presence of the sidewalls (Lappa
et al., 2001a). According to this theory, the critical wave number is related to
the axial length of the zone and to the diameter DV of the center-line of the
convection roll, i.e. it scales with the parameter AV ¼ 2L=DV: Thus, the
selection of a higher value ðm ¼ 2Þ of the azimuthal wave number as most
dangerous disturbance (leading to a higher value of the critical Marangoni
number) in the case of gallium liquid bridge, can be explained by the fact that
due to the large deformation of the free surface, the liquid zone held between
the supporting disks behaves as a lower aspect ratio bridge (Table IV). This
theory is supported by the new findings by Imaishi et al. (2001) for cylindrical
liquid bridge of low Pr fluids, i.e. in the range of A . 1:2; a shorter cylindrical
liquid bridge requires the larger temperature difference for the first flow
transition and the most dangerous mode is m ¼ 2 for 1 , A , 1:8 (Figure 13).

If the direction of gravity is reversed (heating from below), the value of
the critical Marangoni number is increased up to Mac ¼ 242:2 (Figure 12(b)).
Note that no steady bifurcation occurs in this case and the instability
threshold value is much higher than the second critical Marangoni number
for a cylindrical liquid bridge of Pr ¼ 0:02 fluid ðMac2

¼ 131:8 for g ¼ 0Þ:
The flow becomes unstable against 3D disturbances directly through a Hopf
bifurcation characterized by a value of the azimuthal wave number m ¼ 1
and critical frequency f ¼ 0:31 Hz (obtained by an extrapolation). Moreover,

Figure 11.
Growth rates as a

function of the
Marangoni number and

determination of the first
critical Marangoni

number (cylindrical
shape, gallium liquid

bridge)
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the numerical simulations highlight that the spatio-temporal behaviour is
quite different with respect to the case of the second bifurcation of flow in a
liquid bridge of low Prandtl number fluid already depicted in detail in
previous works (Imaishi et al., 1999, 2000; Levenstan and Amberg, 1995;
Leypoldt et al., 2000). In those cases, oscillatory flow is superimposed on a
steady 3D field established through the first flow transition. The present
study uncovers a new, heretofore unseen transition directly from steady to
oscillatory flow without the intermediate state of steady, asymmetric flow
traditionally computed for the low-Pr case.

Figure 14 shows the time evolution of the maximum surface azimuthal
velocity obtained for Ma ¼ 300: At early stage, during a transient unsteady
phase ðt , 10:4Þ; the spatio-temporal behaviour is “rotating”. The temperature
disturbances on the interface (surface temperature spots) rotate around the

Figure 12.
Growth rates as a
function of the
Marangoni number and
determination of the first
critical Marangoni
number (on ground
deformed shape, gallium
liquid bridge)
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perimeter of the liquid bridge (Figure 15, the period t has been divided into four
parts and the temperature field is shown in Figure 15(a)-(d), corresponding to
t ¼ 0; t=4; t=2; 3t=4). The time dependent behaviour of the temperature field is
simply characterized by a full rotation of the entire flow pattern in azimuthal
direction (Figure 16).

After a transient phase, the early rotating regime is taken over by a
new spatio-temporal behaviour (Figure 14). During the rotating regime,
the frequency is f ¼ 0:449 Hz but after a transient time the frequency becomes
f ¼ 0:386 Hz: In this case, the behaviour is “pulsating”. The pulsating
temperature spots on the surface of the bridge are shown in Figure 17 (the
period t has been divided into four parts and the fields are shown in
Figure 17(a)-(d) corresponding to t ¼ 0; t=4; t=2; 3t=4). These temperature
spots “pulsate”, i.e. the cold spot grows in axial direction during the shrinking

Figure 13.
Structure of 3D

Marangoni flow with
m ¼ 2 in the case of

gallium liquid bridge,
Ma ¼ 120 at the steady
state, 1g, bridge heated

from above. (a) Velocity
field in the meridian

plane f ¼ 0;
(b) azimuthal velocity in
the cross-section z ¼ 0.5;

(c) 3D view of the iso-
surfaces of the

temperature disturbance;
(d) azimuthal velocity on

the free surface
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of the hot spot and viceversa but, the azimuthal positions of these extrema do
not change (Figure 18).

To further clarify these behaviours and to establish a simple criterion to
“detect” the oscillating regime (to be used during experimental investigations),
four “numerical” thermocouples have been located in the bridge (Figure 19)
having the same axial and radial co-ordinates ðr ¼ 1=A; z ¼ 0:75Þ but different
azimuthal positions (with a shift of 908). In Figure 20, the computed
temperatures of the thermocouples T1, T2, T3 and T4, are shown for the
“rotating regime”. Figure 21 shows the results obtained for the “pulsating
regime”.

During the early transient stage dominated by the “rotating” behaviour, the
amplitude of the temperature oscillations does not depend on the local
azimuthal position of the thermocouples and is the same for all the points
having the same radial and axial position. In this transient stage the surface
spots are not fixed, but rotate in azimuthal direction, hence each of the four
numerical thermocouples measures a maximum (minimum) temperature
value when the hot (cold) spot passes on it. In the rotating model, the
time temperature profiles show hence a phase displacement depending on
the azimuthal co-ordinate. Since the critical wave number is m ¼ 1; the
oscillations show a phase displacement of p=2 between two numerical
thermocouples located at angular distance of 908 and a phase displacement of p
between two numerical thermocouples located at angular distance of 1808. For
the “pulsating regime”, there is no phase shift between T1 and T4 and no phase
shift between T2 and T3 but T1 and T4 measure values with a phase shift of p

Figure 14.
Time evolution of the
maximum surface
azimuthal velocity in the
case of gallium liquid
bridge, Ma ¼ 300, 1g,
heating from below
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with respect to T2 and T3. This behaviour comes from the fact that the
temperature disturbance can be represented as two spots on the liquid bridge
surface. In the pulsating model, these spots have azimuthal fixed positions.
Since for m ¼ 1; the azimuthal extension of each spot is 1808, and the
thermocouples have an azimuthal shift of 908, two thermocouples will be placed
on a spot and the others on the second spot measuring values having an
opposite phase.

Moreover, other distinguishing marks between the two regimes can be
highlighted: in the “pulsating” regime, the “numerical” probes located on
the free surface at the same axial position with an angular shift of 908, do not
measure the same maximum neither the same minimum (i.e. the amplitudes of

Figure 15.
Snapshots of

temperature disturbance
iso-surfaces over a period
of oscillation (Ma ¼ 300,
deformed shape, heating

from below, rotating
regime)
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the oscillations measured by the thermocouples are different). This behaviour
occurs since the azimuthal position of the spots is fixed and the azimuthal
temperature distribution related to each spot is not uniform, i.e. each
thermocouple measures a maximum (minimum) value of the temperature
depending on its local azimuthal position on the spot.

Though the similarity of this oscillatory flow with Marangoni flow
instabilities in the case of high Prandtl number liquids (standing waves and
travelling waves (Lappa et al., 2001b; Yasushiro et al., 1997, 1999), the
mechanism of the instability observed in the present results is completely
different. In fact, the azimuthal flow is not driven by the surface temperature
distribution. On the free surface, the azimuthal flow is directed from the cold
spot towards the hot spot (azimuthal flow due to the instability and azimuthal
Marangoni effect “counteract” on the free surface), thus proving that in this
case the instability is hydrodynamic in nature.

Finally Figure 22 shows the oscillatory behaviour of the temperature field for
the case of cylindrical liquid bridge heated from below ðRa . 0Þ at Ma ¼ 160;

Figure 16.
Snapshots of
temperature
disturbances at z ¼ 0.5
over a period of
oscillation (Ma ¼ 300,
deformed shape, heating
from below, rotating
regime)
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slightly above the second critical Marangoni number under micro gravity
condition ðMac2

¼ 131:8Þ: In this case a “torsional” oscillatory motion with
m ¼ 1 is dominant. The wave number is the same as that in a deformed liquid
bridge, but the oscillatory behaviour is completely different being characterized
by a periodic twist (back and forth motion) in azimuthal direction of the 3D
m ¼ 1 disturbance.

Conclusions
The influence of the gravity effect on the features of the Marangoni flow
instability in half zone liquid bridges in the case of low Prandtl liquids has

Figure 17.
Snapshots of

temperature disturbance
iso-surfaces over a period
of oscillation (Ma ¼ 300,
deformed shape, heating

from below, pulsating
regime)
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been investigated by direct 3D and time-dependent simulation of the problem.
This topic is important since most of the available experimental data come
from on ground experimentation. The simulation have been carried out for
heating from above, heating from below and zero g conditions in the case of
cylindrical shape (gravity deformation “switched off”) and for heating from
above and heating from below in the case of melt/gas interface allowed to
deform.

Figure 18.
Snapshots of
temperature
disturbances at z ¼ 0.5
over a period of
oscillation (Ma ¼ 300,
deformed shape, heating
from below, pulsating
regime)

Figure 19.
Azimuthal position of the
four numerical “probes”
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For the latter situation, body-fitted curvilinear co-ordinates have been
adopted; the non-cylindrical original physical domain in the (r, z, f) space has
been transformed into a cylindrical computational domain in a (j, h, f) space.
Silicon and gallium liquid bridges ðL ¼ 1 cm; A ¼ 2:0Þ have been investigated.
The computed shape of the liquid bridges exhibit different behaviour according
to the physical properties of the melts. The interface of the Gallium liquid
bridge is strongly deformed whereas in the case of silicon, the deviation from
the cylindrical surface is small.

Figure 20.
Time evolution of the

temperatures measured
by four numerical

“probes” located at
different azimuthal

positions with a shift of
908 (free surface,

z ¼ 0.75) during the
“rotating regime”

(gallium liquid bridge,
1g, Ma ¼ 300, heating

from below)

Figure 21.
Time evolution of the

temperatures measured
by four numerical

“probes” located at
different azimuthal

positions with a shift of
908 (free surface,

z ¼ 0.75) during the
“pulsating regime”

(gallium liquid bridge,
1g, Ma ¼ 300, heating

from below)

3D numerical
simulation of

Marangoni flow

335



In the case of straight surface, the growth rates obtained under normal gravity
and heating from above conditions lie below the corresponding ones obtained
in the case of microgravity environment. Viceversa, the growth rates obtained
in the case heating from below are above those corresponding to zero g
conditions. For the different cases, the wave number is always equal to one
ðm ¼ 1Þ thus showing that in the case of a silicon and gallium liquid bridges
having a length of 1 cm, the azimuthal flow structure is not affected by the
buoyancy forces. The on ground critical Marangoni numbers in the case of g
parallel and antiparallel to the bridge axis are increased and decreased,
respectively, with respect to the case of microgravity conditions.

If the deformation of the shape is not ignored, the flow exhibits further
stabilization for the heating from below condition. The corresponding values of
the growth rate in fact lie below those obtained in the opposite case. Therefore,
in real liquid bridges, gravity always acts stabilizing the Marangoni flow
regardless of its direction.

The on ground static shape also influences the value of the azimuthal
organization of the flow field. The wave number is shifted to higher values if

Figure 22.
Snapshots of
temperature
disturbances at z ¼ 0.5
over a period of
oscillation (gallium
liquid bridge, 1g,
Ma ¼ 160, heating from
below, cylindrical
interface)
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the heating from above condition and the deformation of the free surface are
taken into account.

The stabilization and destabilization of the flow field for the different
configurations have been explained according to the process of selection and
amplification of the azimuthal disturbances responsible for the inertia
instability. In the case of heating from below and cylindrical interface, in
particular, the destabilization follows from the increase of intensity of the axial
shear associated to the combined effect of buoyancy and Marangoni forces on
the free surface. On the other hand, if the surface is allowed to deform, the
stabilization occurring for both the heating conditions (from above and from
below) is related to the increase of the diameter of the convection roll. In fact,
due to the increase of this diameter, the effective aspect ratio of the toroidal
vortex is reduced.

In the case of heating from below, a surprising behaviour has been found in
the case of gallium. The axi-symmetric steady flow is strongly stabilized and
maintained up to Mac ¼ 242:2: At this Marangoni number, there arises a direct
transition to 3D oscillatory flow with m ¼ 1 and critical frequency 0.31 Hz.
This value is significantly larger than the second critical Marangoni number
value for a cylindrical liquid bridge under microgravity condition, i.e. Mac2

¼
131:8: The critical threshold is increased and surprisingly, no steady
bifurcation occurs. The flow becomes unstable to 3D disturbances directly
through a Hopf (oscillatory) bifurcation. The present study uncovers a new,
heretofore unseen, transition from steady to oscillatory flow without the
intermediate state of steady, asymmetric flow traditionally computed for the
low-Pr case. The instability behaves as a high-Pr-like oscillatory bifurcation.
The spatio-temporal behaviour of the flow field is “rotating” during an early
stage and then this regime is taken over by a “pulsating” regime. Though the
similarity with hydrothermal instabilities is already observed in the case of
high Prandtl number liquid, this oscillatory bifurcation has been proved to be
hydrodynamic in nature and has never been reported before. Further
investigation is required to investigate these aspects from an experimental
point of view. For this reason, some experimental criterions to detect the
transition from one regime to the other have been suggested and discussed.

According to the present analysis, the liquid bridge exhibits different
behaviours according to the level of detail used to model the effect of gravity
(static deformation neglected or “switched off”). The difference between the
straight and the deformed configuration and the related possibility to use one or
the other model to better reproduce the behaviours of on ground floating zones
used for the crystal growth process have been investigated and discussed in
detail. Contrary to the case of high Prandtl number liquids, for the present case,
the effect of buoyancy forces does not seem to play an important role whereas
the shape is crucial in determining the stability properties of the flow (i.e. the
critical Marangoni number) and its 3D structure (i.e. the azimuthal wave
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number) as well as the type of bifurcation (steady or oscillatory). The paper
introduces novel results and, at the same time, represents a quite exhaustive
attempt to help investigators to discern the complex interrelations among
various effects and in particular, those associated to the presence of gravity.
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Appendix: equations and boundary conditions in body fitted co-ordinates
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